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Abstract— The algebraic soft-decision decoding (ASD) of
Reed–Solomon (RS) codes yields a competent decoding per-
formance with a polynomial-time complexity. But its complex-
ity remains high due to the interpolation that generates the
interpolation polynomial Q(x, y). The progressive ASD (PASD)
algorithm has been introduced to construct Q(x, y) with a
progressively enlarged y-degree, adjusting its error-correction
capability and computation to the received information. However,
this progressive decoding is realized at the cost of memorizing the
intermediate decoding information. To overcome this challenge,
this paper proposes a new PASD algorithm which is evolved
from the ASD using module minimization (MM) interpolation.
Polynomial Q(x, y) can be constructed through the image of
the progressively enlarged submodule basis without the need of
memorizing the intermediate decoding information, eliminating
the memory cost of progressive decoding. The MM interpolation
also attributes to a remarkably lower complexity than the original
PASD algorithm. Furthermore, a complexity reducing variant is
proposed based on assessing the degree of Lagrange interpolation
polynomials. We also analyze the complexity of the proposed
decoding methods and reveal their channel dependent feature.
Our simulation results show their low-complexity and advanced
decoding performances.

Index Terms— Algebraic soft-decision decoding, complex-
ity reduction, module minimization, progressive interpolation,
Reed–Solomon codes.

I. INTRODUCTION

REED-SOLOMON (RS) codes are widely employed in
communication systems and storage devices for error-

correction. The conventional unique decoding algorithms such
as the Berlekamp-Massey (BM) algorithm [1] [2] and the
Welch-Berlekamp algorithm [3], can correct errors up to half
of the code’s minimum Hamming distance. Assisted by soft
information, the generalized minimum-distance (GMD) decod-
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ing algorithm [4] improves the error-correction performance
by performing the error-erasure decoding.

In late 90s, Sudan proposed the interpolation based alge-
braic decoding to correct errors beyond the half distance
bound [5]. However, this only applies to codes of rate
less than 1

3 . Later, Guruswami and Sudan improved it to
decode all rate codes [6]. This is called the Guruswami-Sudan
(GS) algorithm. It consists of two major steps, interpo-
lation and root-finding. Interpolation finds the minimum
polynomial Q(x, y), which is often realized by Koetter’s
iterative polynomial construction approach [7]. Afterwards,
root-finding determines the y-roots of Q(x, y), which may
contain the intended message [8]. By transforming soft
received information into multiplicity information, Koetter and
Vardy introduced the algebraic soft-decision decoding (ASD)
algorithm [9], the so-called KV algorithm, that significantly
outperforms its hard-decision counterpart, the GS algorithm.
Several techniques are applied for this transform to achieve a
better ASD performance [10] [11]. Also utilizing soft received
information, the algebraic Chase decoding algorithm [12] con-
structs a number of test-vectors which share some common
symbols. This allows the interpolation of all test-vectors to be
performed in a binary tree growth fashion, resulting in a low
decoding complexity. There also exist several approaches to
reduce the complexity of Koetter’s interpolation, including the
re-encoding transform [13] [14] and the divide-and-conquer
interpolation [15] [16]. Cassuto et al. further analyzed the
dependence of interpolation cost on the error weights and pro-
posed an interpolation algorithm that reduces the average-case
decoding complexity [17].

Besides Koetter’s interpolation, polynomial Q(x, y) can
also be determined using the concept of module and its
basis reduction [18]. One can formulate a basis of mod-
ule which contains bivariate polynomials that interpolate all
the prescribed points with their multiplicity. Presenting the
basis as a matrix over univariate polynomials, row opera-
tion further reduces it into the Gröbner basis [19] defined
under a weighted monomial order. The minimum candi-
date of the basis is the intended polynomial Q(x, y). This
interpolation technique is called module minimization (MM)
which is also referred as basis reduction in computer alge-
bra. The basis reduction can be realized by the conven-
tional Mulders-Storjohann (MS) algorithm [20]. Meanwhile,
several asymptotically faster basis reduction approaches have
been proposed in [21]–[24]. Lee and O’Sullivan presented an
explicit module basis construction and reduction for the ASD,
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namely the ASD-MM algorithm [25]. Ma and Vardy further
utilized the re-encoding transform to reduce the ASD-MM
complexity [26]. The MM interpolation has also been gener-
alized to perform the multi-trial GS (MT-GS) decoding [27],
the algebraic Chase decoding [28] and power decoding [29].
Based on another structure of ideal, Trifonov proposed a fast
randomized ideal multiplication algorithm to reduce the GS
decoding complexity [30]. Its soft-decision and re-encoding
transformed variants have been introduced in [31] and [32],
respectively. Until now, the asymptotically fastest interpolation
algorithms appear in [24] and [33].

For the above mentioned interpolation based algebraic
decoding, the error-correction capability is determined by the
y-degree of Q(x, y), i.e., degy Q. However, enlarging degy Q
also implies a heavier decoding computation. In order to adjust
the error-correction capability and decoding complexity to the
received information, the progressive ASD (PASD) algorithm
has been proposed in [34]. Utilizing Koetter’s interpolation
to construct Q(x, y), it enlarges degy Q gradually, resulting
in a progressively expanded polynomial set. It terminates
once the intended message is found. As a result, when
the received information is reliable as in high signal-to-
noise ratio (SNR), the message can be decoded with the
smallest parameter and the least computation effort. How-
ever, the polynomial set expansion requires knowledge of the
intermediate decoding information. The progressive decoding
is realized at the cost of system memory. Despite the later
effort [35] to alleviate the memory cost, the PASD algorithm
still exhibits a memory cost that is quadratic in the codeword
length.

To overcome this challenge and further reduce the decoding
complexity, this paper proposes a new PASD algorithm in
which its progressive interpolation is realized by the MM
technique. It is named the PASD-MM algorithm. This research
shows utilizing the MM technique, the progressive interpola-
tion can be realized through the image of the progressively
enlarged submodule basis. To determine an interpolation poly-
nomial Q(x, y) with a larger y-degree, one could expand the
image and further reduce it into the desired form. During the
expansion, the newly introduced polynomial can be directly
generated from the enumerated interpolation points. Conse-
quently, the cost of memorizing the intermediate decoding
information can be removed. We also show that a common
multiplier of all entries of the submodule basis can be divided
away, yielding an image with entries (univariate polynomials)
of lower degrees. This results in a lower image expansion and
reduction complexity. It should be pointed out that this work
can be seen as a soft-decision decoding development of the
earlier MT-GS algorithm [27]. The MT-GS algorithm decodes
the message with progressively enlarged parameters, multi-
plicity and degy Q, also resulting in a progressively expanded
module basis without additional memory requirement. There-
fore, this work is motivated by the memory challenge in the
original progressive decoding [34] [35] and the results of [27].

Based on assessing the degree of Lagrange interpolation
polynomials, we further propose a complexity reducing variant
for the PASD-MM algorithm, namely the CR-PASD-MM algo-
rithm. It can show the effectiveness of complexity reduction

at high SNR. Complexity of the PASD-MM algorithm will
be analyzed through characterizing the computational cost
of image expansion and image reduction. It shows that the
progressive MM interpolation yields a lower complexity for
high rate codes, which is preferred in practice. Our analysis
also reveals the channel dependent feature of the proposed
algorithms. Numerical results show for the popular (255, 239)
RS code, the PASD-MM algorithm and its variant yield a
complexity reduction over the original PASD algorithm that
employs Koetter’s interpolation by sometimes two orders of
magnitude. More importantly, this low complexity progressive
interpolation is realized without any additional memory cost.
Simulation results on decoding performance will also be
provided, demonstrating that the proposed algorithms maintain
the ASD error-correction capability.

The rest of the paper is organized as follows. Section II
introduces RS codes and the PASD algorithm. Section III
briefly reviews the known ASD-MM algorithm. Section IV
introduces our proposed PASD-MM algorithm. Section V
further introduces its complexity reducing variant. Section VI
analyzes the complexity of the proposed algorithms.
Section VII shows their decoding performance. Finally,
Section VIII concludes the paper.

II. BACKGROUND KNOWLEDGE

This section provides the background knowledge for the
paper, including RS codes and the PASD algorithm [34].

A. RS Codes

Let Fq = {σ0, σ1, . . . , σq−1} denote a finite field of size q,
Fq[x] and Fq[x, y] denote the univariate and bivariate polyno-
mial rings defined over Fq , respectively. Given an (n, k) RS
code with length n and dimension k, respectively, the message
polynomial f(x) ∈ Fq[x] is defined as

f(x) = f0 + f1x+ · · · + fk−1x
k−1,

where f0, f1, . . . , fk−1 are message symbols. Codeword c =
(c0, c1, . . . , cn−1) ∈ F

n
q can be generated by

c = (f(α0), f(α1), . . . , f(αn−1)),

where α0, α1, . . . , αn−1 are the n distinct nonzero elements
of Fq. They are called code locators.

B. The PASD Algorithm

Assume c is transmitted through a discrete memoryless
channel and r = (r0, r1, . . . , rn−1) ∈ R

n is the received vector.
A reliability matrix Π ∈ R

q×n
≥0 can be obtained based on r.

Its entry πij is the symbol wise a posteriori probability 1

defined as πij = Pr[cj = σi | rj ], where i = 0, 1, . . . , q − 1
and j = 0, 1, . . . , n− 1. Matrix Π will be transformed into a
multiplicity matrix M ∈ Z

q×n
≥0 . This step can be implemented

by several approaches [9]–[11]. Its entry mij indicates the
interpolation multiplicity for point (αj , σi). Based on M,
interpolation finds the minimum polynomial Q(x, y) that

1It is assumed that Pr[cj = σi] = 1
q
,∀(i, j).
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interpolates all points (αj , σi) with their prescribed multiplic-
ity mij . Given a polynomialQ ∈ Fq[x, y] which can be written
as Q(x, y) =

∑
a,bQabx

ayb and a nonnegative integer pair
(r, s), the (r, s)-Hasse derivative evaluation at point (αj , σi)
is defined as [36]

Dr,s(Q(x, y))|(αj ,σi) =
∑

a≥r,b≥s

(
a

r

)(
b

s

)
Qabα

a−r
j σb−s

i .

It implies an interpolation constraint on polynomial Q.
If Dr,s(Q(x, y))|(αj ,σi) = 0, ∀r + s < mij , then Q inter-
polates point (αj , σi) with a multiplicity of mij . Hence, there
exists

(
mij+1

2

)
interpolation constraints for point (αj , σi) and

matrix M contains
∑q−1

i=0

∑n−1
j=0

(
mij+1

2

)
such constraints. For

polynomial Q, its monomials xayb can be organized under the
(1, k − 1)-reverse lexicographical (revlex) order.2 Let xa′

yb′

denote the leading monomial ofQ whereQa′b′ �= 0, the (1, k−
1)-weighted degree of Q is deg1,k−1Q = deg1,k−1 x

a′
yb′ .

Furthermore, given two polynomials Q1 and Q2 with leading
monomials xa′

1yb′1 and xa′
2yb′2 , respectively, we declare Q1 <

Q2 if xa′
1yb′1 < xa′

2yb′2 .
Definition 1 [9]: Given a multiplicity matrix M and a vector

μ = (μ0, μ1, . . . , μn−1) ∈ F
n
q , let ij = index{σi | σi = μj},

the matrix M based score of μ is defined as

SM(μ) =
n−1∑
j=0

mijj .

Theorem 1 [9]: Given an (n, k) RS code, let Q(x, y) ∈
Fq[x, y] denote an interpolation polynomial that satisfies
the interpolation constraints defined by M. If the score
of codeword c satisfies SM(c) > deg1,k−1Q(x, y), then
Q(x, f(x)) = 0.

Therefore, interpolation aims to find the polynomial Q that
has the minimum (1, k−1)-weighted degree, and the message
f(x) can be retrieved by finding the y-roots of Q [8]. The
maximum decoding output list size is determined by degy Q.
In this paper, we let l = degy Q which is the decoding
parameter.

The interpolation is often implemented by Koetter’s iterative
polynomial construction algorithm [7]. It starts with initial-
izing a set of l + 1 polynomials as Gl = {1, y, . . . , yl}.
They are iteratively updated to satisfy all the interpolation
constraints defined by M. The updated set is a Gröbner
basis [19] in which Q is the minimum candidate. In contrast,
the PASD algorithm functions with a progressively enlarged
y-degree of the interpolation polynomial, which is denoted
as v and 1 ≤ v ≤ l. Based on Π, a series of multi-
plicity matrices M1,M2, . . . ,Ml are generated accordingly.
Beginning with v = 1, polynomial set G1 is initialized as
{1, y}. Its entries will be computed to satisfy the interpolation
constraints defined by M1. The interpolation polynomial Q1

where degy Q1 = 1 is the minimum candidate of the computed

2The (1, k − 1)-weighted degree of xayb is deg1,k−1 xayb = a +

(k − 1)b. Given two distinct monomials xa1yb1 and xa2yb2 , xa1yb1 <
xa2yb2 if deg1,k−1 xa1yb1 < deg1,k−1 xa2yb2 , or deg1,k−1 xa1yb1 =

deg1,k−1 xa2yb2 and b1 < b2.

set G1. If Q1(x, f(x)) = 0, the message can be decoded 3

and the decoding terminates. Otherwise, G1 will be expanded
by introducing a new polynomial y2. The new polynomial
needs to be updated to satisfy the interpolation constraints
that have been satisfied by the existing polynomials of G1.
The expanded polynomial set G2 will be further computed to
satisfy the extra interpolation constraints defined by M2. As a
result, the interpolation polynomial Q2 where degy Q2 = 2
is the minimum candidate of the computed set G2. Again,
if Q2(x, f(x)) = 0, the decoding terminates. Otherwise,
the decoding continues by enlarging v as above. It terminates
either when the message is decoded or when v exceeds
the predefined value l. Consequently, the PASD algorithm
decodes the message with the smallest parameter v. The above
description shows that the newly introduced polynomial needs
to be updated using the intermediate decoding information.
Hence, the progressive decoding system is realized with a
certain memory requirement [34].

III. THE ASD-MM ALGORITHM

This section reviews the ASD-MM algorithm which con-
sists of Π → M transform [9], basis construction [22] [25],
basis reduction [20] and root-finding [8]. They substantiate the
proposed PASD-MM algorithm.

A. Basis Construction

In order to determine the interpolation polynomial Q(x, y)
where degy Q = l, a module basis is needed. We first define
module Ml.

Definition 2: Given a multiplicity matrix M, module Ml for
the ASD is defined as the space of all bivariate polynomials
over Fq[x, y] that interpolate all points (αj , σi) with their
multiplicity mij (mij �= 0). They have a maximum y-degree
of l.

In this paper, we utilize Algorithm A of [9] to perform the
Π → M transform. Let

mj =
q−1∑
i=0

mij

and

m = max{mj, ∀j}.
The transform stops when m reaches the predefined l. There-
fore, mj ≤ l and m = l. As l becomes infinity, the mul-
tiplicity matrix M would be proportional to the reliability
matrix Π [9]. In general, a larger decoding parameter l
leads to a better decoding capability. Note that several other
techniques [10] [11] can be applied for the Π → M transform
to improve the ASD performance, but with a higher transform
complexity.

Now we construct the basis of module Ml. It can be
underpinned by the following point enumeration [22]. Let Lj

denote an enumeration list that is drawn from column j of M.

3The message polynomial f(x) can be validated using the maximum
likelihood (ML) criterion of [37].
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It contains interpolation points (αj , σi) with their multiplicity
mij as

Lj = [(αj , σi), . . . , (αj , σi)︸ ︷︷ ︸
mij

, ∀i and mij �= 0].

Note that |Lj | = mj . Its balanced list L′
j is further created

as follows. Initialize L′
j = ∅. Move one of the most frequent

elements from Lj to the back of L′
j and repeat this process

mj times until Lj becomes empty. The balanced list can be
denoted as

L′
j = [(αj , y

(0)
j ), (αj , y

(1)
j ), . . . , (αj , y

(mj−1)
j )], (1)

where y(0)
j , y

(1)
j , . . . , y

(mj−1)
j ∈ Fq and they appear with the

exact multiplicities given by mij . Since L′
j is a permutation

of Lj , |L′
j| = mj . Finally, let mj(t) denote the maximum

multiplicity of the last mj − t elements of L′
j as

mj(t) = max{multi.((αj , y
(t)
j )), . . . ,multi.((αj , y

(mj−1)
j ))}.

Note that mj(0) = max{mij , ∀i} and mj(t) = 0 for t ≥ mj .
Module Ml can now be generated. First, we define the

following Lagrange interpolation polynomials

Fε(x) =
∑

j∈Υε

y
(ε)
j

∏
j′∈Υε,j′ �=j

x− αj′

αj − αj′
, (2)

where Υε = {j | mj(ε) > 0} and ε = 0, 1, . . . , l− 1. It holds
that Fε(αj) = y

(ε)
j , ∀j ∈ Υε. Therefore, y−Fε(x) interpolates

points (αj , y
(ε)
j ), ∀j ∈ Υε. Now, Ml can be generated as an

Fq[x]-module by the following l + 1 polynomials [22] [25]

Pt(x, y) =
n−1∏
j=0

(x− αj)mj(t)
t−1∏
ε=0

(y − Fε(x)), (3)

where t = 0, 1, . . . , l.
Lemma 2 [22]: Let Qt(x, y) =

∑t
τ=0 Q(τ)

t (x)yτ ∈ Ml

with degy Qt = t < l, we have
∏n−1

j=0 (x− αj)mj(t)|Q(t)
t (x).

Consequently, we prove the following Theorem.
Theorem 3: Polynomials Pt(x, y) form a basis of Ml.

Proof: First, we prove Pt(x, y) ∈ Ml. It can be seen that∏t−1
ε=0(y−Fε(x)) interpolates the first t points of all balanced

lists while
∏n−1

j=0 (x − αj)mj(t) interpolates the remaining
points. Since degy Pt(x, y) ≤ l, ∀t, recalling Definition 2,
Pt(x, y) ∈ Ml.

Next, we prove any element of Ml can be presented as an
Fq[x]-linear combination of Pt(x, y). Assume that Q(x, y) ∈
Ml and let us write (3) as Pt(x, y) =

∑t
τ=0 P

(τ)
t (x)yτ . Since

when t = l, P (l)
l (x) = 1, there exists a polynomial pl(x) ∈

Fq[x] that enables Ql−1(x, y) = Q(x, y) − pl(x)Pl(x, y) so
that degy Ql−1 = l − 1. Note that if degy Q < l, pl(x) = 0.
Since Q, Pl ∈ Ml, then Ql−1 ∈ Ml. Continuing with t =
l−1, P (l−1)

l−1 (x) =
∏n−1

j=0 (x−αj)mj(l−1). Based on Lemma 2,∏n−1
j=0 (x− αj)mj(l−1)|Q(l−1)

l−1 (x). Therefore, we can generate
Ql−2(x, y) by Ql−2(x, y) = Ql−1(x, y) − pl−1(x)Pl−1(x, y)
so that degy Ql−2 = l − 2. Following the above deduction

until t = 0, we have P
(0)
0 (x) =

∏n−1
j=0 (x − αj)mj(0) and∏n−1

j=0 (x − αj)mj(0)|Q(0)
0 (x). Hence, there exists p0(x) that

enables Q0(x, y)−p0(x)P0(x, y) = 0. Therefore, if Q ∈ Ml,

it can be written as an Fq[x]-linear combination of Pt(x, y),
i.e., Q(x, y) =

∑l
t=0 pt(x)Pt(x, y).

Therefore, equation (3) defines a basis of Ml, denoted
as Bl.

The following Remark points out the ASD-MM algorithm
can be simplified into a hard-decision decoding, i.e., the MM
based GS algorithm [18].

Remark 4: Let ω = (ω0, ω1, . . . , ωn−1) denote the
hard-decision received word. For the GS algorithm, interpo-
lation determines polynomial Q(x, y) that interpolates the n
points (α0, ω0), (α1, ω1), . . . , (αn−1, ωn−1) with a multiplic-
ity of m (m ≤ l) [6]. This implies that y(ε)

j = ωj , where
ε = 0, 1, . . . ,m− 1. Therefore, mj(t) = m− t and |Υt| = n
for t = 0, 1, . . . ,m − 1, mj(t) = 0 and |Υt| = ∅ for
t = m,m+1, . . . , l−1. The Lagrange interpolation polynomial
is simplified to

F (x) =
n−1∑
j=0

ωj

n−1∏
j′=0,j′ �=j

x− αj′

αj − αj′

and the module generators of (3) become

Pt(x, y) =
n−1∏
j=0

(x−αj)m−t(y−F (x))t, if t=0, 1, . . . ,m−1,

Pt(x, y) = yt−m(y − F (x))m, if t = m,m+ 1, . . . , l.

B. Basis Reduction

In order to describe the basis reduction, we need to present
Bl as a matrix over Fq[x].

Definition 3: Given a matrix V ∈ Fq[x](l+1)×(l+1), let t
and τ denote its row index and column index, respectively.
Further let V|t denote its row-t and V|(τ)

t denote its entry of
row-t column-τ .

• The row-degree of V|t is rdegV|t =
max{degV|(τ)

t , ∀τ}.
• The leading position (LP) of V|t is LP(V|t) =

max{τ | deg V|(τ)
t = rdegV|t}.

• The degree of matrix V is mdeg V =
∑

t rdegV|t.
Let �Fq[x, y]�l = {Q ∈ Fq[x, y] | degy Q ≤ l}, we define

a bijective map from a bivariate polynomial Q(x, y) =∑
τ≤lQ

(τ)(x)yτ to a vector over Fq[x] as

φl : �Fq[x, y]�l → Fq[x]l+1

Q(0)(x) + · · · +Q(l)(x)yl 	→ (Q(0)(x), . . . , Q(l)(x)).

Now we can present basis Bl as a matrix over Fq[x] by letting
Bl|t = φl(Pt(x, y)), ∀t. Bl will be further reduced into the
Gröbner basis [19] of Ml. The following Proposition gives a
simple criterion for validating the Gröbner basis.

Proposition 5 [25]: Assume that {gt ∈ �Fq[x, y]�l, 0 ≤ t ≤
l} generates module Ml. Under the (1, k − 1)-revlex order,
if y-degree of the leading monomial of each polynomial gt

is different, {gt ∈ �Fq[x, y]�l, 0 ≤ t ≤ l} is a Gröbner basis
of Ml.

In this paper, we utilize the MS algorithm [20] to real-
ize the basis reduction. Several research [21]–[24] had pro-
posed the asymptotically faster algorithms which employ fast
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polynomial multiplication. But they are also markedly more
involved to implement. It is outside the scope of this paper to
implement and see for which codeword length they become
faster than the MS algorithm.

Definition 4 [20]: Given a square matrix V over Fq[x],
if any two rows V|t and V|t′ exhibit LP(V|t) �= LP(V|t′),
then V is in weak Popov form.

Lemma 6 [38]: For a square matrix V over Fq[x], when it
is in weak Popov form, we have mdeg V = deg detV .

After basis Bl is constructed by (3), it will be mapped by

Al = Bl · diag(1, xk−1, . . . , xl(k−1)),

so that rdegAl|t = deg1,k−1 Pt(x, y). The MS algorithm [20]
will reduce Al into weak Popov form A′

l. Demap it by

B′
l = A′

l · diag(1, x−(k−1), . . . , x−l(k−1)),

and let P ′
t (x, y) = φ−1

l (B′
l|t), ∀t. Since deg1,k−1 P

′
t (x, y) =

rdegA′
l|t = degA′

l|(LP(A′
l|t))

t , when A′
l is in weak Popov

form, y-degree of each polynomial’s leading monomial,
i.e., LP(A′

l|t), is different. Based on Proposition 5, B′
l is the

Gröbner basis of Ml under the (1, k−1)-revlex order. Among
the polynomials P ′

t (x, y), the minimum one (also under the
same order) is chosen as the interpolation polynomial Q(x, y).
Root-finding further determines its y-roots [8]. If multiple y-
roots are found, output the estimated message whose corre-
sponding codeword has the minimum Euclidean distance to
the received vector r.

IV. THE PASD-MM ALGORITHM

This section introduces the proposed PASD-MM algorithm.
It progressively increases y-degree of the interpolation polyno-
mial, i.e., the decoding output list size, leading to a gradually
enhanced error-correction capability. Again, v denotes the
progressive iteration index and 1 ≤ v ≤ l. We first introduce
the concepts of submodule and its basis image.

A. Submodule and Its Basis Image

We introduce submodule that is the subspace of a module.
It is defined as follows.

Definition 5: Given a module Ml that is generated
by (3), its submodule Mv is the subspace spanned by
P0(x, y), . . . , Pv(x, y).

Therefore, P0(x, y), . . . , Pv(x, y) form a basis Bv of Mv.
Note that degy Pt(x, y) ≤ v where t = 0, 1, . . . , v, and Bv ∈
Fq[x](v+1)×(v+1).

For a balanced list L′
j , we define

δj(t) = mj(t) − mj(t+ 1), (4)

where t = 0, 1, . . . , l. Since mj ≤ l, mj(l + 1) = mj(l) = 0.
Consequently, δj(l − 1) = mj(l − 1) and δj(l) = 0. Let us
further define

Gt(x) =
n−1∏
j=0

(x− αj)mj(t) (5)

and

Rt(x) =
n−1∏
j=0

(x− αj)δj(t). (6)

Based on (4), it can be realized that

Gt(x) = Gt+1(x)Rt(x)

= Gv(x)
v−1∏
ε=t

Rε(x), (7)

where v = t + 1, t + 2, . . . , l. Since mj(l) = δj(l) = 0, ∀j,
Gl(x) = Rl(x) = 1.

Let Θτ
t = {θ ⊂ {0, 1, . . . , t−1} | |θ| = τ}. Note that Θ0

t =
{∅}, |Θτ

t | =
(

t
τ

)
and |Θt

t| = 1. For example, Θ2
4 = {{0, 1},

{0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}} and |Θ2
4| = 6.

With the above notations, generators (3) can be rewritten as

Pt(x, y) = Gt(x)Wt(x, y), (8)

where

Wt(x, y) =
t−1∏
ε=0

(y − Fε(x)) =
t∑

τ=0

w
(τ)
t (x)yτ (9)

and

w
(τ)
t (x) =

∑
θ∈Θt−τ

t

∏
ε∈θ

(−Fε(x)). (10)

Note that w(t)
t (x) = 1 and W0(x, y) = 1. The following

Theorem characterizes the recursive structure of Bv , which
underpins the PASD-MM algorithm.

Theorem 7: Let Ξ0 = [1], basis Bv can be written as

Bv = Gv(x) · Ξv, (11)

where

Ξv =
[

Rv−1(x) · Ξv−1 0T
v

w
(0)
v (x) · · · w

(v−1)
v (x) w

(v)
v (x)

]
(12)

and 1 ≤ v ≤ l. Note that 0v denotes an all zero vector of size
v.

Proof: Based on (8), when v = 1, B1 contains

P0(x, y) = G0(x)W0(x, y),
P1(x, y) = G1(x)W1(x, y).

Since G0(x) = G1(x)R0(x) and W0(x, y) = 1, B1 = G1(x)·
Ξ1, where

Ξ1 =
[
R0(x) · Ξ0 0
w

(0)
1 (x) w

(1)
1 (x)

]
.

Note that P1,0(x, y) = φ−1
1 (Ξ1|0) = R0(x) and P1,1(x, y) =

φ−1
1 (Ξ1|1) = W1(x, y).
Based on (7) and (8), we know when v ≥ 2, Bv−1 contains

Pt(x, y) = Gv−1(x)
v−2∏
ε=t

Rε(x)Wt(x, y), if t = 0, 1, . . . , v − 2,

Pv−1(x, y) = Gv−1(x)Wv−1(x, y).
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Therefore, Bv−1 = Gv−1(x) · Ξv−1, and Pv−1,t(x, y) =
φ−1

v−1(Ξv−1|t) =
∏v−2

ε=t Rε(x)Wt(x, y) for t = 0, 1, . . . , v − 1
and Pv−1,v−1(x, y) = Wv−1(x, y). Furthermore, Bv contains

Pt(x, y) = Gv(x)
v−1∏
ε=t

Rε(x)Wt(x, y), if t = 0, 1, . . . , v − 1,

Pv(x, y) = Gv(x)Wv(x, y).

Therefore,

Bv = Gv(x) · Ξv,

and Pv,t(x, y) = φ−1
v (Ξv|t) =

∏v−1
ε=t Rε(x)Wt(x, y) =

Rv−1(x)Pv−1,t(x, y) = Rv−1(x)φ−1
v−1(Ξv−1|t) for t =

0, 1, . . . , v − 1 and Pv,v(x, y) = φ−1
v (Ξv|v) = Wv(x, y).

Consequently, Ξv|t = Rv−1(x)·Ξv−1|t for t = 0, 1, . . . , v−1,
and Ξv|v = φv(Wv(x, y)). The recursive structure of (12) can
be obtained.

Definition 6: Define the following bijective map

ψv : Fq[x](v+1)×(v+1) → Fq[x](v+1)×(v+1)

[Bv|(τ)
t , ∀(t, τ)] 	→

[Bv|(τ)
t

Gv(x)
, ∀(t, τ)

]
,

where (t, τ) = 0, 1, . . . , v. Under such map, Ξv = ψv(Bv)
and it is called the image of submodule basis Bv .

Based on Theorem 7 and since Gl(x) = 1, we have
Bl = Ξl. Further recalling Definition 5, we have Bl = Bl.
Therefore, the following Corollary can be led to.

Corollary 8: When reaching the last progressive iteration
as v = l, the submodule basis and its image are equivalent to
module basis Bl as Bl = Ξl = Bl.

Let us denote two diagonal matrices as

Dv = diag(1, xk−1, . . . , xv(k−1))

and

D−1
v = diag(1, x−(k−1), . . . , x−v(k−1)).

Theorem 7 and Corollary 8 reveal that Bl can be pro-
gressively constructed through the images of its submodule
basis. The MS algorithm performs Fq[x]-linear combinations
for rows of Al. This row operation can be rescheduled as the
following. The MS algorithm can target the first two rows of
Al. This is equivalent to reducing matrix B1 · D1 into weak
Popov form. It then targets the first three rows of Al, which
is equivalent to reducing matrix B2 · D2 into weak Popov
form. Continue the process until matrix Bl · Dl is in weak
Popov form. Since Gv(x) is the common multiplier of all
polynomials of Bv , performing the MS algorithm on matrix
Bv ·Dv is equivalent to performing it on matrix Ξv ·Dv . This
leads to the following PASD-MM algorithm. It aims to decode
the message from an intermediate interpolation polynomial
Qv(x, y) where degy Qv = v, which will be retrieved from
the reduced matrix Ξv · Dv.

B. The Algorithm

The PASD-MM algorithm decodes the message from the
image of the progressively enlarged submodule basis. The pro-
gressive interpolation consists of two steps, image expansion

and image reduction. At the beginning, v = 1, image Ξ1 is
initialized as

P1,0(x, y) = R0(x),
P1,1(x, y) = W1(x, y).

Map Ξ1 into X1 = Ξ1 · D1 and the MS algorithm will reduce
X1 into weak Popov form X ′

1. Demap it as Ξ′
1 = X ′

1 · D−1
1 .

Polynomials P ′
1,0(x, y) and P ′

1,1(x, y) can be retrieved from
Ξ′

1 by P ′
1,0(x, y) = φ−1

1 (Ξ′
1|0) and P ′

1,1(x, y) = φ−1
1 (Ξ′

1|1),
respectively. Among them, the minimum one is chosen as
the interpolation polynomial Q1(x, y) where degy Q1 = 1.
Further determine y-root of Q1. If Q1(x, f̂(x)) = 0 and the
estimated codeword ĉ = (f̂(α0), f̂(α1), . . . , f̂(αn−1)) satis-
fies the ML criterion [37] (refer to Appendix A), the decoding
terminates and outputs f̂(x). Otherwise, the decoding pro-
gresses to determine Q2(x, y) through expanding Ξ′

1 to Ξ2.
In general, at progressive iteration v − 1 (v ≥ 2), if the

message cannot be decoded from Ξ′
v−1, then Ξ′

v−1 will be
expanded to Ξv in order to find Qv(x, y). Based on Theorem 7,
Ξv can be generated by

Pv,t(x, y) = Rv−1(x)P ′
v−1,t(x, y), if t = 0, 1, . . . , v − 1,

(13)

Pv,v(x, y) = Wv(x, y), (14)

where P ′
v−1,t(x, y) = φ−1

v−1(Ξ
′
v−1|t). Based on (9) and (10),

we know Pv,v(x, y) can be directly generated based on the
balanced lists, which does not require the knowledge of the
intermediate decoding information. This overcomes the mem-
ory cost of the original PASD algorithm [34]. After generating
Ξv , it will be mapped by

Xv = Ξv · Dv. (15)

The MS algorithm will then reduce Xv into weak Popov
form X ′

v . Further demap it as

Ξ′
v = X ′

v · D−1
v . (16)

Polynomials P ′
v,0(x, y), . . . ,P ′

v,v(x, y) are retrieved from Ξ′
v

by P ′
v,0(x, y) = φ−1

v (Ξ′
v|0), . . ., P ′

v,v(x, y) = φ−1
v (Ξ′

v|v),
respectively. Among them, the minimum one is chosen as
Qv(x, y). If Qv(x, f̂(x)) = 0 and the estimated codeword ĉ
satisfies the ML criterion, the decoding terminates and output
f̂(x). Note that Qv may have multiple y-roots, but only one
of them would satisfy the criterion. If the ML codeword is
not found, the decoding progresses by updating v = v + 1.
If v > l, it implies the designed maximum y-degree of the
interpolation polynomial is exceeded. The decoding terminates
with a decoding failure, i.e., no ML codeword is found.
Otherwise, the decoding continues.

The PASD-MM algorithm is summarized in Algorithm 1.

C. Validity Analysis

Let M̃v ∈ Z
q×n
≥0 denote a multiplicity matrix where its

entry m̃ij(v) defines the interpolation multiplicity that has
been held by polynomials P ′

v,0(x, y), . . . ,P ′
v,v(x, y) w.r.t.

point (αj , σi). Note that polynomials P ′
v,t(x, y) = φ−1

v (Ξ′
v|t).
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Algorithm 1 The PASD-MM Algorithm
Input: M;
Output: f̂(x);

1: Generate all balanced lists L′
j as in (1);

2: Initialize v = 1 and P ′
0,0(x, y) = 1;

3: Generate Ξv as in (13) and (14);
4: Map Ξv to Xv as in (15);
5: Perform the MS algorithm to yield X ′

v;
6: Demap X ′

v to Ξ′
v as in (16) and determine Qv(x, y);

7: Determine y-roots of Qv. If Qv(x, f̂(x)) = 0 and ĉ
satisfies the ML criterion, output f̂(x) and terminate the
decoding; Otherwise, update v = v + 1;

8: If v > l, terminate the decoding and declare a failure;
Otherwise, go to Step 3.

Since Bv contains polynomials that interpolate the points with
a multiplicity of at least mij , based on (11),

m̃ij(v) ≥ max{mij − mj(v), 0}.
Let Qv(x, y) and Qv(x, y) denote the minimum candidate of
the reduced Bv and Ξv , respectively. Polynomial Qv(x, y)
interpolates points (αj , σi) with their multiplicity mij and
its codeword score is SM(c), while polynomial Qv(x, y)
interpolates points (αj , σi) with their reduced multiplicity
m̃ij(v). Based on Definition 1, the M̃v based score of c is

SM̃v
(c) =

n−1∑
j=0

m̃ijj(v).

The following Theorem validates the process of finding mes-
sage f(x) from the progressively enlarged Ξv.

Theorem 9: Given an (n, k) RS code, if the transmit-
ted codeword c satisfies SM(c) > deg1,k−1 Qv(x, y), then
SM̃v

(c) > deg1,k−1Qv(x, y) and Qv(x, f(x)) = 0.
Proof: Based on Theorem 7, we know Qv(x, y) = Gv(x)·

Qv(x, y), and

deg1,k−1 Qv(x, y) = degGv(x) + deg1,k−1Qv(x, y).

Based on (5), we know Gv(x) interpolates points (αj , cj) with
a multiplicity of mj(v). Therefore,

SM(c) = degGv(x) + SM̃v
(c).

If SM(c) > deg1,k−1 Qv(x, y), then SM̃v
(c) >

deg1,k−1Qv(x, y). Based on Theorem 1, we have
Qv(x, f(x)) = 0.
Therefore, retrieving f(x) from Bv is equivalent to retrieving
it from Ξv . When v = l, M̃l = M. This reveals that as l
approaches infinity, M̃l also becomes proportional to matrix
Π. The PASD-MM algorithm would maintain the optimal
ASD performance. However, it should be pointed out that the
intermediate M̃v may not be proportional to Π. Matrix M̃v is
obtained based on the recursive structure of (12), but not on
the consideration of maximizing the successful intermediate
decoding probability. The construction of M̃v is related to
the choice of interpolation points during the intermediate
decoding. A more accurate assumption for the interpolation
point distribution such as [10] [11] may help improve the

intermediate decoding performance. This will be considered
in our future work.

V. A COMPLEXITY REDUCTION APPROACH

We further propose a complexity reduction approach for
the PASD-MM algorithm, naming it the CR-PASD-MM algo-
rithm. It is based on assessing the degree of Lagrange inter-
polation polynomials Fε(x) of (2).

Lemma 10: Given Fε(x), if |Υε| = n and y(ε) =
(y(ε)

0 , y
(ε)
1 , . . . , y

(ε)
n−1) is a codeword, then degFε(x) < k.

Proof: Based on (2), we have degFε(x) ≤ n − 1
and Fε(αj) = y

(ε)
j , ∀j ∈ Υε. If |Υε| = n and y(ε) is a

codeword, there exists a message polynomial g(x) ∈ Fq[x]
with deg g(x) < k such that g(αj) = y

(ε)
j , ∀j.

Let g′(x) = Fε(x)−g(x), we have deg g′(x) ≤ n−1. Since
g′(αj) = Fε(αj) − g(αj) = 0, g′(x) has n roots. It can be
written as g′(x) = γ(x) ·∏n−1

j=0 (x−αj), where γ(x) ∈ Fq[x].
This leads to deg g′(x) ≥ n, which contradicts to the fact that
deg g′(x) ≤ n−1. Therefore, γ(x) = 0 and g′(x) = 0. Hence,
Fε(x) = g(x) and degFε(x) < k.

Lemma 10 implies that during the progressive decoding,
we can determine whether y(ε) is a valid codeword by assess-
ing the degree of Fε(x). If degFε(x) < k and y(ε) also
satisfies the ML criterion [37], the decoding outputs Fε(x)
as f̂(x) and terminates without performing image expansion
and reduction of the current iteration. This reduces complexity
of the PASD-MM algorithm. The CR-PASD-MM algorithm is
further summarized as follows.

Algorithm 2 The CR-PASD-MM Algorithm
Input: M;
Output: f̂(x);

1: Initialize v = 1;
2: Construct Fv−1(x) as in (2);
3: If degFv−1(x) < k and y(v−1) is an ML codeword
4: Terminate the decoding and output Fv−1(x) as f̂(x);
5: Else
6: Perform Step 3 − 7 of Algorithm 1;
7: If v > l, terminate the decoding and declare a failure;

Otherwise, go to Step 2.

The following Lemma can be further led to based on
Lemma 10.

Lemma 11: At the progressive iteration v, if there exists a
Lagrange interpolation polynomial Fε(x) with degFε(x) >
k − 1 and ε < v, then the newly formulated matrix Xv will
not be in weak Popov form.

Proof: At the progressive iteration v, since w(v)
v (x) = 1,

degXv|(v)
v = v(k− 1). Without loss of generality, we assume

there exists degFε′(x) > k− 1 and degFε(x) ≤ k − 1, ∀ε �=
ε′. Since w

(v−1)
v (x) = −∑v−1

ε=0 Fε(x), degw(v−1)
v (x) =

degFε′ (x). Furthermore,

degXv|(v−1)
v = deg(w(v−1)

v (x) · x(v−1)(k−1))
= degFε′(x) + (v − 1)(k − 1)
> v(k − 1).
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TABLE I

PROGRESSIVE ITERATION COMPLEXITY

Therefore, LP(Xv|v) �= v and Xv is not in weak Popov
form.

Lemma 11 implies the following operation guidance for
both the PASD-MM and the ASD-MM algorithms. For the
PASD-MM algorithm, if degF0(x) > k − 1, X1 will not
be in the weak Popov form, neither will the following pro-
gressively expanded matrices X2,X3 and etc. Consequently,
image reduction needs to be performed in every progressive
iteration. For the ASD-MM algorithm that functions with a
decoding parameter l, if |Υε| = n and degFε(x) < k for
ε = 0, 1, . . . , l − 1, then matrix Al will be in weak Popov
form. Hence, the formulated module basis Bl is the intended
Gröbner basis. The following basis reduction can be skipped.

VI. COMPLEXITY ANALYSIS

This section analyzes complexity of the proposed
PASD-MM and the CR-PASD-MM algorithms. The com-
plexity refers to the number of finite field multiplications
needed to decode a codeword. Note that during the decoding,
multiplication dominates the finite field arithmetic operations.

A. Complexity of Image Expansion and Reduction

Complexity of image expansion and reduction are charac-
terized by the following two Lemmas, respectively.

Lemma 12: At progressive iteration v, complexity of image
expansion is O(n2v3).

Proof: The image expansion complexity is measured by
the number of multiplications in computing generators (13)
and (14).

We fisrt determine complexity of computing (13),
which needs to characterize max{degx P ′

v−1,t(x, y)}. Note
that after image reduction, max{degx P ′

v−1,t(x, y)} ≤
max{degx Pv−1,t(x, y)}. In order to simplify the analysis,
assume that the image reduction is not performed after each
expansion, so that we have Pv−1,t(x, y) =

∏v−2
ε=t Rε(x) ·

Wt(x, y). Since degRε(x) ≤ n and degxWt(x, y) ≤ (n−1)t,
we have degx Pv−1,t(x, y) ≤ n(v − t − 1) + (n − 1)t =
n(v − 1) − t. Hence, max{degx P ′

v−1,t(x, y)} ≤ n(v − 1).
Therefore, constructing the first v image generators requires
at most

∑v−1
t=0 n(v − 1) · n · v = n2v2(v − 1) multiplications.

Note that the naive polynomial multiplication is used.
In computing (14), n2 multiplications are needed to con-

struct Fv−1(x). Since Wv(x, y) = (y − Fv−1(x))Wv−1(x, y)
and degx Wv−1(x, y) ≤ (n − 1)(v − 1), complexity of
computing Wv(x, y) is n2v2. Therefore, complexity of image
expansion at progressive iteration v is Cexp(v) = n2v3 +n2 +
n2v2. Asymptotically, it is O(n2v3).

Lemma 13: At progressive iteration v, complexity of image
reduction is O(n(n− k)v4).

Proof: The image reduction complexity is determined by
max{degXv|(τ)

t } and the number of row operations that is
required to reduce Xv into X ′

v .
We first characterize max{degXv|(τ)

t }. After image reduc-
tion, we have max{degX ′

v|(τ)
t } ≤ max{degXv|(τ)

t }. Similar
to the proof of Lemma 12, assume that image reduction is not
performed. Hence, entry of matrix Xv can be represented as
Xv|(τ)

t =
∑v−1

ε=t Rε(x)·w(τ)
t (x)·x(k−1)τ . Since degRε(x) ≤ n

and degw(τ)
t (x) ≤ (n− 1)(t− τ), we have

degXv|(τ)
t ≤ n(v − t) + (n− 1)(t− τ) + (k − 1)τ

= nv − t− (n− k)τ.

Therefore, max{degXv|(τ)
t } ≤ nv.

Given a matrix Xv over Fq[x], there are less than
v(mdegXv − deg detXv + v) row operations to reduce it
into weak Popov form X ′

v [38]. We determine mdegXv −
deg detXv as follows. Let τ ′ = LP(Xv|v), we have
rdegXv|v = degw(τ ′)

v (x) · x(k−1)τ ′
. Based on (13) – (15),

mdegXv =mdeg(Rv−1(x) · X ′
v−1) + degw(τ ′)

v (x) · x(k−1)τ ′
.

Furthermore,

deg detXv = deg det(Rv−1(x) · X ′
v−1) + deg x(k−1)v.

Since X ′
v−1 is in weak Popov form, based on Lemma 6,

mdegX ′
v−1 = deg detX ′

v−1. Hence,

mdegXv − deg detXv

= degw(τ ′)
v (x) · x(k−1)τ ′ − deg x(k−1)v

≤ (n− 1)(v − τ ′) − (k − 1)(v − τ ′).

Therefore, when τ ′ = 0, max{mdegXv − deg detXv} =
(n − k)v. As a result, there are at most (n − k + 1)v2 row
operations in the image reduction. Since max{degXv|(τ)

t } ≤
nv and there are v + 1 entries in each row, com-
plexity of image reduction at progressive iteration v is
Cred(v) = (n − k + 1)nv3(v + 1). Asymptotically, it is
O((n− k)nv4).

Table I shows the numerical results of each progressive
iteration complexity in decoding the (63, 31) and the (63,
55) RS codes. They verify the above analysis. It also shows
that different rate codes have a similar complexity for image
expansion, while the high rate code exhibits a lower image
reduction complexity.

B. Average Complexity of the PASD-MM Algorithm

The proposals can adjust the decoding computation to the
received information, recovering the message with the small-
est decoding parameter. If the channel condition improves,
the received information would be more reliable. As a result,
the decoding can terminate with a smaller decoding para-
meter, resulting in a lower computational cost. Therefore,
the progressive decoding complexity is channel dependent.
To show this channel dependent feature, we measure the aver-
age decoding complexity over multiple decoding events at a
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TABLE II

ASYMPTOTIC COMPLEXITY COMPARISON

certain SNR. Let P(v) denote the probability of the progressive
decoding algorithms (the PASD-MM and the MT-GS as a
benchmark) produce the intended message f(x) at iteration v.
Moreover, Lemmas 12 and 13 reveal that the progressive
iteration v requires at most C(v) = Cexp(v) + Cred(v) mul-
tiplications. Therefore, the average complexity Cavg of the
PASD-MM algorithm can be written as

Cavg =
l∑

v=1

P(v)(
v∑

v′=1

C(v′)) + (1 −
l∑

v=1

P(v))(
l∑

v′=1

C(v′)),

where 1−∑l
v=1 P(v) is the probability of decoding failure in

which the progressive decoding terminates with v = l. Since
complexity of root-finding step is O(n2v2), it is marginal
in comparison to the progressive interpolation complexity.
There also exists several asymptotically faster variants with
a complexity of O(v2n log2 n log logn) [22] [39]. From
the perspective of asymtotic complexity, image reduction
dominates the decoding complexity. Therefore, when
all decoding events terminate with v = l, the PASD-MM
algorithm exhibits a worst case complexity, i.e., O(l5n(n−k))
with the MS algorithm. The Alekhnovich algorithm [22]
reduces the asymptotic complexity to O(l5n log2 n log logn).
However, it should be pointed out that this low-complexity
image reduction only becomes effective when the codeword
length is very large, e.g., beyond 4000 [27]. For practical
codes, the MS algorithm remains efficient. Table II compares
complexity of the proposed algorithm with some known
algebraic decoding algorithms for RS codes. The interpolation
or basis reduction techniques are also given. Note that for the
progressive decoding algorithms, we consider their worst case
complexity. i.e., when v = l. It can be seen that the worst case
complexity of the progressive algorithms remains the same
as their non-progressive variant with the same interpolation
or basis reduction technique. However, complexity advantage
of the progressive algorithms will become obvious when
the channel condition improves, in which the decoding can
terminate earlier.

Let de denote the number of hard-decision errors in a
received word ω. At an SNR, its average over all decoding
events is denoted as d̃e which is in decimal. Table III shows
the statistics of P(v) and d̃e in decoding the (63, 31) RS code.
P(v) of the MT-GS algorithm is also shown for comparison.
The results were obtained in the additive white Gaussian
noise (AWGN) channel with BPSK modulation by running
10 000 decoding events at each SNR. Note that the MT-GS
algorithm can correct 16 and 17 errors with a degy Q of 1
and 4, respectively. Table III shows as the SNR increases,

there are less hard-decision errors. For both of the progressive
decoding algorithms, more decoding events can be terminated
earlier, lowering the average complexity. At 7.0 dB, all decod-
ing events were terminated after the first iteration for both of
the algorithms. Complexity of the two algorithms converges
to the minimum level that is characterized by performing the
ASD-MM or the GS algorithm with l = 1.

Table IV further shows the average complexity in decoding
the (63, 31) RS code. For this code, complexity of the BM
and the GMD algorithms are 1.41 × 104 and 8.25 × 105,
respectively. In Table IV, the ASD and the PASD algo-
rithms employ Koetter’s interpolation [7], in which the PASD
algorithm exhibits a memory cost (measured as the number
of polynomial coefficients that need to be memorized) of
O(n2l4) [35]. All algorithms decode with l = 4. As SNR
increases, the progressive decoding algorithms can decode the
message at an earlier iteration, resulting in a lower compu-
tational cost. When SNR is sufficiently high, e.g., 7.0 dB,
the PASD-MM algorithm yields a complexity reduction of
two orders of magnitude over the ASD-MM algorithm. This
is similar in comparing the PASD and the ASD algorithms.
Moreover, low-complexity feature of the MM interpolation
can also be validated by comparing the PASD-MM and the
PASD algorithms, as well as the ASD-MM and the ASD
algorithms. Table IV also shows that when in the medium
SNR regions, the PASD-MM algorithm is less complex than its
hard-decision counterpart, the MT-GS algorithm. Even though
the progressive algorithms may perform multiple root-finding
processes if they terminate at the decoding iteration greater
than one, our results show this extra computation can be
offset by the progressive interpolation. For this code, our
simulation shows about 10% of the decoding computation
is spent on root-finding. It is also interesting to note that
when both the PASD-MM and the ASD-MM algorithms
function with the maximum decoding parameter l, the former
is still less complex. As discussed in Section IV.A, the PASD-
MM algorithm can be interpreted as rescheduling the row
operations of the ASD-MM algorithm. For the PASD-MM
algorithm, its basis entries have lower degree than those of
the corresponding basis that is handled by the ASD-MM
algorithm. This leads to a lower computational cost. Finally,
Table IV also shows complexity of the hybrid decoding [40],
where Hybrid-1 incorporates the BM and the ASD-MM algo-
rithms and Hybrid-2 incorporates the BM and the PASD-MM
algorithms. The ASD-MM (or the PASD-MM) algorithm will
only be deployed when the BM algorithm fails. The hybrid
decoding systems have further lower complexity which is also
channel dependent. Note that at 7.0 dB, the hybrid decoding
complexity is defined by that of the BM algorithm (BM
decoding donimates). The PASD-MM algorithm exhibits the
same complexity magnitude as the BM algorithm.

C. Average Complexity of the CR-PASD-MM Algorithm

Table V further compares complexity of the ASD-MM,
the PASD, the PASD-MM and the CR-PASD-MM algorithms
in decoding the popular (255, 239) RS code. For this code,
complexity of the BM and the GMD algorithms are 4.44×104

and 4.65 × 105, respectively. Compared to the ASD-MM
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TABLE III

THE STATISTICS OF P(v) AND d̃e IN DECODING THE (63, 31) RS CODE (l = 4)

TABLE IV

AVERAGE COMPLEXITY IN DECODING THE (63, 31) RS CODE (l = 4)

TABLE V

AVERAGE COMPLEXITY IN DECODING THE (255, 239) RS CODE

algorithm, the PASD-MM algorithm exhibits a complexity
reduction of at least two orders of magnitude at high SNR.
For this code, about 15% of the decoding computation is
spent on root-finding at each progressive iteration. Based
on Section V, we know during the progressive iteration v,
if degFv−1(x) < k and y(v−1) satisfies the ML criterion,
the progressive decoding will terminate without performing
the image expansion and reduction. Table V shows the CR-
PASD-MM algorithm yields a further complexity reduction
over the PASD-MM algorithm. For the (255, 239) RS code,
the CR-PASD-MM algorithm starts to show its complexity
reduction effect when the SNR is greater than 7 dB. Our
decoding statistics shows when SNR = 7 dB, 10.05% of
the decoding events are terminated by the above criterion.
When SNR = 9 dB, 88.52% of the decoding events are
terminated earlier in the same manner. These resutls show the
effectiveness of degree assessment at high SNR.

VII. DECODING PERFORMANCE

This section shows decoding performance of the proposals.
The frame error rate (FER) is obtained over the AWGN
channel.

Fig. 1. Performance of the (63, 31) RS code with BPSK modulation.

Fig. 1 shows performance of the (63, 31) RS code using
BPSK modulation. It can be seen that the ASD-MM and the
PASD-MM algorithms perform the same. They both outper-
form the BM, the GMD and the MT-GS algorithms. Note
that the MT-GS algorithm can correct 16 and 17 errors with
(m = 1, l = 1) and (m = 3, l = 4), respectively. Performance
of the ASD-MM and the PASD-MM algorithms enhance by
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Fig. 2. Performance of the (255, 239) RS code with BPSK modulation.

Fig. 3. Performance of the (63, 55) RS code with 64QAM modulation.

increasing l. Revisiting the complexity results of Table IV,
we know that over the whole spectrum of SNR, the PASD-
MM algorithm is less complex than the ASD-MM algorithm.

Fig. 2 shows performance of the popular (255, 239) RS code
again using BPSK. Again, it shows with the same decoding
parameter l, the ASD-MM and the PASD-MM algorithms
perform the same. Their performances improve with l and
outperform the GMD algorithm when l ≥ 4. Fig. 2 further
shows performance of the PASD-MM algorithm with l = 8
but terminated at v = 4. It means that matrix M is generated
by l = 8, but the PASD-MM algorithm only utilizes matrix
M̃1, M̃2, M̃3 and M̃4 for the progressive decoding. The
curve is marked by PASD-MM (l = 8, v = 4). It can be
seen that it performs worse than the PASD-MM (l = 4),
implying the intermediate M̃4 does not approximate Π as
well as M that corresponds to l = 4. A better iterative
strategy of constructing the intermediate M̃v would help find
the intended message earlier. This will be our future work.
It should be pointed out that the PASD-MM (l = 8) still
achieves the same performance as the ASD-MM (l = 8). Note
that the CR-PASD-MM algorithm also maintains the ASD
performance. Table V shows the CR-PASD-MM algorithm can
further reduce the complexity over the PASD-MM algorithm.
It is more effective when the SNR is large. In this scenario,
the degree assessment of Lagrange interpolation polynomials
is more effective for complexity reduction.

Finally, Fig. 3 shows performance of the (63, 55) RS code
using 64QAM. It again shows performance of the ASD-MM
and the PASD-MM algorithms improve as l increases and
approach that of the GMD algorithm when l = 4. Compared
with the BM algorithm, the algebraic decoding with l = 16
yields a performance gain of 0.8 dB at the FER of 10−4.

VIII. CONCLUSION

This paper has introduced the PASD-MM algorithm for RS
codes, which is a progressive embodiment of the ASD-MM
algorithm and a soft-decision extension of the MT-GS
algorithm. It produces the interpolation polynomial with a
progressively enlarged y-degree, adjusting the error-correction
capability and decoding computation to the received informa-
tion. It has been shown using the MM technique, the progres-
sive interpolation can be realized through the image of the
progressively enlarged submodule basis. Our validity analysis
has demonstrated that finding message from the submodule
basis is equivalent to finding it from its image. Furthermore,
a complexity reducing variant of the PASD-MM algorithm has
been proposed based on assessing the degree of Lagrange
interpolation polynomials. Complexity analysis of the pro-
posed algorithms has also been performed. Our simulation
results have shown that significant complexity reduction can
be achieved and the proposed algorithms maintain the ASD
error-correction capability. This work is an advancement over
the original PASD approach since the progressive MM inter-
polation is realized without any additional memory cost. This
feature can facilitate the application of the progressive RS
decoding.

APPENDIX

A. The ML Criterion

With the reliability matrix Π, we can identify the largest and
the second largest entries of column j as πI

j = max{πij , ∀i}
and πII

j = max{πij , ∀i and πij �= πI
j}, respectively. Given a

hard-decision received word ω = (ω0, ω1, . . . , ωn−1) and an
estimated codeword ĉ = (ĉ0, ĉ1, . . . , ĉn−1), we define

Ω1(ω, ĉ) =
∏

j:ĉj �=ωj

πI
j

πîjj

,

where îj = index{σi | σi = ĉj}. For the codeword symbol

positions where ĉj = ωj , sort elements of the set {πI
j

πII
j
, ∀ĉj =

ωj} in an ascending order such as

πI
j0

πII
j0

≤ πI
j1

πII
j1

≤ · · · .

We can further define

Ω2(ω, ĉ) =
dmin−d−1∏

ζ=0

πI
jζ

πII
jζ

,

where dmin = n − k + 1 is the minimum Hamming distance
of the code and d is the Hamming distance between ω and ĉ.
If

Ω1(ω, ĉ) ≤ Ω2(ω, ĉ),

then ĉ is the ML codeword [37].
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